EtherNet/IP Fieldbus manual MDrive Motion Control Products V1.00, 01.2012

EtherNet/IP Fieldbus Manual		
Date	Revision	Changes
09/26/2011	V1.00, 09.2011	Initial Release
01/12/2012	V1.00, 01.2012	Minor updates

The information in IMS Schneider Electric Motion USA product documentation and on this web site has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

IMS Schneider Electric Motion USA reserves the right to make changes without further notice to any products to improve reliability, function or design. IMS Schneider Electric Motion USA does not assume any liability arising out of the application or use of any product or circuit described; neither does it convey any license under its patent rights of others.

IMS Schneider Electric Motion USA's general policy does not recommend the use of its products in life support or aircraft applications wherein a failure or malfunction of the product may directly threaten life or injury. Per the terms and conditions of sales of IMS Schneider Electric Motion USA, the user of IMS Schneider Electric Motion USA products in life support or aircraft applications assumes all risks of such use and indemnifies IMS Schneider Electric Motion USA against all damages.

EtherNet/IP Fieldbus Manual Revision V1.00, 01.2012 Copyright © Schneider Electric Motion USA, All Rights Reserved

Important information

This manual is part of the product.

Carefully read this manual and observe all instructions.

Keep this manual for future reference.

Hand this manual and all other pertinent product documentation over to all users of the product.

Carefully read and observe all safety instructions and the chapter "Before you begin - safety information".

This page intentionally left blank

Table of Contents

	Impo	ortant information	3
Ab	out this ma	anual Further reading	1 1
1	Introduct 1.1	tion Fieldbus devices on the EtherNet/IP network	1 1
2	Before ye 2.1 2.2 2.3 2.4 2.5 S	You begin - safety information Qualification of personnel Intended use Hazard categories Basic information Standards and terminology	3 3 4 5 6
3	Basics 3.1	EtherNet/IP technology	7 7 10 10 11 12
4	Installati	ion	13
5	Commise 5.1	sioning Configuration 5.1.2 Configuring the Assembly object	 15 16 17
6	Diagnost 6.1 6.2	tics and troubleshooting Fieldbus communication error diagnostics Status LEDs	 19 19 20
7	Object m 7.1 7.2 7.3 7.4 7.5	nodelData types used in this object modelIdentity object $(01_n - 1 \text{ instance})$ 7.2.1Identity object attribute 0x05 (Status)Assembly object $(04_n - 4 \text{ instances})$ TCP object $(05_n - 1 \text{ instance})$ Ethernet Link object (F6_n - 1 instance)	21 21 22 23 24 25
8	Manufac 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	cturer specif c objectsPreliminary8.1.1MCode compatibilitySetup object $(64_h - 1 \text{ instance})$ Miscellaneous object $(65_h - 1 \text{ instance})$ Motion object $(66_h - 1 \text{ instance})$ I/O object $(67_h - 1 \text{ instance})$ Position object $(68_h - 1 \text{ instance})$ Encoder object $(69_h - 1 \text{ instance})$ Hybrid specific object $(6A_h - 1 \text{ instance})$	27 27 27 28 28 28 29 30 30 31 31 32

9	Glossary			33
	12.1	Units ar	nd conversion tables	33
		12.1.1	Length	33
		12.1.2	Mass	33
		12.1.3	Force	33
		12.1.4	Power	34
		12.1.5	Rotation	34
		12.1.6	Torque	34
		12.1.7	Moment of inertia	34
		12.1.8	Temperature	34
		12.1.9	Conductor cross section	35
	12.2	Terms a	and Abbreviations	35
Α	Setting u	p an MD	rive using RS Logix 5000	41
Α	Setting u A.1	p an MD Adding	rive using RS Logix 5000 the MDrive	 41 41
Α	Setting u A.1 A.2	p an MD Adding Explicit	the MDrive	41 41 49
Α	Setting u A.1 A.2	p an MD Adding Explicit A.2.1	the MDrive messaging Formatting the message	41 41 49 50
Α	Setting u A.1 A.2	p an MD Adding Explicit A.2.1	the MDrive messaging Formatting the message	41 41 49 50
A	Setting u A.1 A.2 Upgradin	p an MD Adding Explicit A.2.1	rive using RS Logix 5000 the MDrive messaging Formatting the message hernet controller f rmware	41 41 49 50
A	Setting u A.1 A.2 Upgradin B.1	p an MD Adding Explicit A.2.1 og the Et Upgradi	brive using RS Logix 5000 the MDrive messaging Formatting the message hernet controller f rmware ing the Ethernet controller firmware	41 41 50 53
A B	Setting u A.1 A.2 Upgradin B.1	p an MD Adding Explicit A.2.1 bg the Et Upgradi B.1.1	rive using RS Logix 5000 the MDrive messaging Formatting the message hernet controller f rmware ing the Ethernet controller firmware To begin	41 49 50 53 53 54
A B	Setting u A.1 A.2 Upgradin B.1	p an MD Adding Explicit A.2.1 bg the Et Upgradi B.1.1 B.1.2	brive using RS Logix 5000 the MDrive messaging Formatting the message hernet controller f rmware ing the Ethernet controller firmware To begin Set the Tftpd Server IP	41 49 50 53 53 54 54
A B	Setting u A.1 A.2 Upgradin B.1	p an MD Adding Explicit A.2.1 bg the Et Upgradi B.1.1 B.1.2 B.1.3	brive using RS Logix 5000 the MDrive messaging Formatting the message hernet controller f rmware ing the Ethernet controller firmware To begin Set the Tftpd Server IP Set the Ethernet upgrade file name	41 49 50 53 53 53 54 54 54
A B	Setting u A.1 A.2 Upgradin B.1	p an MD Adding Explicit A.2.1 bg the Et Upgradi B.1.1 B.1.2 B.1.3 6.6.4	brive using RS Logix 5000 the MDrive messaging Formatting the message hernet controller f rmware ing the Ethernet controller firmware To begin Set the Tftpd Server IP Set the Ethernet upgrade file name Enter upgrade mode	41 49 50 53 53 54 54 54 54
В	Setting u A.1 A.2 Upgradin B.1	p an MD Adding Explicit A.2.1 bg the Et Upgradi B.1.1 B.1.2 B.1.3 6.6.4 6.6.5	berive using RS Logix 5000 the MDrive messaging Formatting the message hernet controller f rmware ing the Ethernet controller firmware To begin Set the Tftpd Server IP Set the Ethernet upgrade file name Enter upgrade mode Complete upgrade process	41 49 50 53 54 54 54 55 55

List of Figures

Figure 1.1: Example TCP/IP network with MDrive products	1
Figure 3.1: Overview of communication means	8
Figure 5.1: Configuration tab	16
Figure 5.2: Configuring the Assembly Objext 0x04	17
Figure 5.3: Export *.L5X file	18
Figure 6.1: Status indicator LEDs	20
Figure A.1: Adding a new module	41
Figure A.2: Generic Ethernet Module	42
Figure A.3: New module setup	43
Figure A.4: Request Packet Interval setting	44
Figure A.5: Import routine	45
Figure A.6: I/O Data type files	45
Figure A.7: Synchronous Copy File Function	46
Figure A.8: Select data type	46
Figure A.9: Main program window	47
Figure A.10: Main program	48
Figure A.11: Explicit message Query_SN	49
Figure A.12: Message configuration dialog	50
Figure B.1: TCP/IP Config tab	53
Figure B.2: Setting the Tftpd Server IP	54
Figure B.3: Setting the upgrade file name	54
Figure B.4: Firmware upgrading	56

List of Tables

Table 3.1: Connection groups	. 10
Table 6.1: Status indicator LEDs	. 20
Table 7.1: Data types identification	. 21
Table 7.2: Identity object (01h – 1 instance)	. 21
Table 7.3: Identity object's common services	. 22
Table 7.4: Bit definitions for status instance attribute of identity	
object	. 22
Table 7.5: Assembly object (04h – 4 instances)	. 23
Table 7.6: Assembly object's common services	. 24
Table 7.7: TCP object (05h – 1 instance)	. 24
Table 7.8: Assembly object's common services	. 24
Table 7.9: Ethernet object (05h – 1 instance)	. 25
Table 7.10: Assembly object's common services	. 25
Table 8.1: Object class groupings	. 27
Table 8.2: Access types identification	. 27
Table 8.3: Setup object (64h - 1 instance)	. 28
Table 8.4: Miscellaneous object (65, - 1 instance)	. 28
Table 8.5: Motion object (65, - 1 instance)	. 29
Table 8.6: I/O object (66, - 1 instance)	. 30
Table 8.7: Position object (68, - 1 instance)	. 31
Table 8.8: Encoder object (69 – 1 instance)	. 31
Table 8.9: Hybrid specific object (6A. – 1 instance)	. 32
Table A.1: Message configuration	.43

About this manual

About this manual

	The information provided in this manual supplements the product hard- ware manual.
Source manuals	The latest versions of the manuals can be downloaded from the Internet at:
	http://www.schneider-electric-motion.us
	Applicable manuals for MDrive products with EtherNet/IP are:
	 MCode Programming and Software Reference manual MODBUS/TCP Fieldbus manual EtherNet/IP Fieldbus manual
Graphic User Interface software	For easier prototyping and development, a Graphic User Interface (GUI) is available for use with MDrivePlus and MDrive Hybrid products. This software is available for download from the Internet at:
	http://www.schneider-electric-motion.us
Further reading	

Recommended literature for further reading.

Reference documents • The CIP Networks Library Volume 1 Common Industrial Protocol

- The CIP Networks Library Volume 3 DeviceNet Adaptation of CIP
- The CIP Networks Library Volume 2 DeviceNet Adaptation of CIP
- DeviceNet terms of Usage Agreement http://www.odva.org
- User Association Open DeviceNet Vendor Association (ODVA) http://www.odva.org

Page intentionally left blank

1 Introduction

EtherNet/IP is a fieldbus based on TCP and UDP. EtherNet/IP extends Ethernet by an advanced industrial protocol (CIP, Common Industrial Protocol) as an application layer for automation applications - this way, Ethernet is excellently suited for industrial control. Products from different manufacturers can be networked without the need for special interface adaptation. The majority of the required network components correspond to the Ethernet components used in the PC world.

1.1 Fieldbus devices on the EtherNet/IP network

Different products with an EtherNet/IP interface can be operated in the same fieldbus. EtherNet/IP provides a common basis for interchanging commands and data between the network devices.

Figure 1.1: Example TCP/IP network with MDrive products.

Page intentionally left blank

2 Before you begin - safety information

The information provided in this manual supplements the product manual. Carefully read the product manual before using the product.

2.1 Qualif cation of personnel

Only appropriately trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation are authorized to work on and with this product. In addition, these persons must have received safety training to recognize and avoid hazards involved. These persons must have sufficient technical training, knowledge and experience and be able to foresee and detect potential hazards that may be caused by using the product, by changing the settings and by the mechanical, electrical and electronic equipment of the entire system in which the product is used.

All persons working on and with the product must be fully familiar with all applicable standards, directives, and accident prevention regulations when performing such work.

2.2 Intended use

The functions described in this manual are only intended for use with the basic product; you must read and understand the appropriate product manual.

The product may only be used in compliance with all applicable safety regulations and directives, the specified requirements and the technical data.

Prior to using the product, you must perform a risk assessment in view of the planned application. Based on the results, the appropriate safety measures must be implemented.

Since the product is used as a component in an entire system, you must ensure the safety of persons by means of the design of this entire system (for example, machine design).

Operate the product only with the specified cables and accessories. Use only genuine accessories and spare parts.

Any use other than the use explicitly permitted is prohibited and can result in hazards.

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel.

The product must NEVER be operated in explosive atmospheres (hazardous locations, Ex areas).

2.3 Hazard categories

Safety instructions to the user are highlighted by safety alert symbols in the manual. In addition, labels with symbols and/or instructions are attached to the product that alert you to potential hazards.

Depending on the seriousness of the hazard, the safety instructions are divided into 4 hazard categories.

DANGER indicates an imminently hazardous situation, which, if not avoided, will result in death or serious injury.

AWARNING

WARNING indicates a potentially hazardous situation, which, if not avoided, **can result** in death, serious injury, or equipment damage.

CAUTION indicates a potentially hazardous situation, which, if not avoided, **can result** in injury or equipment damage.

CAUTION

CAUTION used without the safety alert symbol, is used to address practices not related to personal injury (e.g. **can result** in equipment damage).

2.4 Basic information

A DANGER

UNINTENDED CONSEQUENCES OF EQUIPMENT OPERATION

When the system is started, the drives are usually out of the operator's view and cannot be visually monitored.

• Only start the system if there are no persons in the hazardous area.

Failure to follow these instructions will result in death or serious injury.

AWARNING

LOSS OF CONTROL

- The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop, overtravel stop, power outage and restart.
- Separate or redundant control paths must be provided for critical functions.
- System control paths may include communication links. Consideration must be given to the implication of unanticipated transmission delays or failures of the link.
- Observe all accident prevention regulations and local safety guidelines. 1)
- Each implementation of the product must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death or serious injury.

1) For USA: Additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems".

2.5 Standards and terminology

Technical terms, terminology and the corresponding descriptions in this manual are intended to use the terms or definitions of the pertinent standards.

In the area of drive systems, this includes, but is not limited to, terms such as "safety function", "safe state", "fault", "fault reset", "failure", "error", "error message", "warning", "warning message", etc.

Among others, these standards include:

- IEC 61800 series: "Adjustable speed electrical power drive systems"
- IEC 61158 series: "Industrial communication networks Fieldbus specifications"
- IEC 61784 series: "Industrial communication networks Profiles"
- IEC 61508 series: "Functional safety of electrical/electronic/ programmable electronic safety-related systems"

3 Basics

3

3.1	EtherNet/IP technology	/
		EtherNet/IP devices are based on the same technology as devices on Ethernet networks in the computer world. For many applications, com- ponents from the existing company network can be used. However, it is recommended to use industrial switches for time-critical applications.
		This manual is not intended to convey basic knowledge, for example in terms of network topology, data security or address assignment.
3.1.1	Data security	
		The larger the network into which the product is integrated, the greater the risk of unauthorized external access. The operator of the local net- work must take appropriate measures to prevent unauthorized access. Contact your network administrator prior to commissioning the product.
3.1.2	Basics	
		The ODVA (is in charge of the specifications for the EtherNet/IP network and EtherNet/IP data terminal equipment. For more information on the ODVA see:
		http://www.odva.org
	Number of nodes	The number of nodes in an EtherNet/IP network is theoretically unlim- ited; it depends on the subnet size and on whether or not a CIP router is used. For example, 254 nodes are possible in a class C subnet.
	Cable length	The maximum cable length is 100 m between EtherNet/IP terminal points and 90 m between infrastructure components. However, interference in industrial environments may require you to use shorter cables.
	Drive prof les	The product supports the following drive profiles:
		"Drive Profile MDrive"

Communication means The product supports the following communication means:

Figure 3.1: Overview of communication means

The product identifies itself as CIP "Generic Device" (Device Type = 0h).

Data link layer The EtherNet/IP data link layer uses the transmission mechanisms as per IEEE 802.3 Standard Ethernet specification (edition 2002). This makes it possible to use a wide selection of available Ethernet components.

Physical layer	Industrial E ent condition EIA standa	EtherNet/IP spo ons, cabling ar ards.	ecifies minimur nd connectors,	n requirements ir based on IEC, A	ι terms of ambi- NSI, TIA and
	The conne nectors. Us EtherNet/II	ctors required se shielded or P.	for Industrial E unshielded CA	therNet/IP includ T5 or CAT6 cabl	e RJ-45 con- es for Industrial
	Copper me	edia may be us	ed only for dis	tances up to 100	m.
Terms: Object class, instance, attribute, service	The Etheri es; one or classes. Th contain the with these	Net/IP approac more instance ne attributes of various parar attributes.	h is object-orie s (objects) can ⁱ an object clas neters. Service	nted. CIP defines be derived from s or the instance are actions tha	s object class- such object derived from it t are possible
Example	Class	Instance	Attribute ID	Description	MCode
	0x64	0x01	0x01	Reset enable	CE
CIP object model	See sectio	n 7.			
Communication model	EtherNet/II nodes che support is be receive	P uses the pro ck the bus as t available. Data d by the consu	ducer-consum o whether a da a packets that a mers of these	er communicatior ata packet with th are sent by produ packets.	n model. All e Identifier they icers can only

Groups of connections	EtherNet/IP is a connection-oriented network. Connections must be
	established and managed between two nodes. There are 4 connection
	groups with different priorities:

Group 1	Top-priority process data (highest priority)
Group 2	For simple master-slave connections
Group 3	For Explicit Messages
Group 4	Reserved group (lowest priority)

Table 3.1: Connection groups

Electronic Data Sheet An EDS file is a file in ASCII format. This file contains device-specific and vendor-specific descriptions of all parameters for a device. The EDS file also contains the fieldbus-specific communication parameters. The EDS file is required for commissioning.

3.1.3 Encapsulation

EtherNet/IP is based entirely on existing TCP/IP and UDP/IP technologies that are used without any modification. TCP/IP is used for the transmission of Explicit Messages while UDP/IP is used for I/O Messaging.

3.1.4 Messaging and message types

EtherNet/IP uses two types of messaging: Explicitly Messaging and Implicit (I/O data) Messaging. EtherNet/IP defines several message types for communication. The product described here uses the "Explicit Message" and "I/O Message" message types.

Explicit messages Explicit Messaging connections are point-to-point connections between two network nodes that are used for transactions of the type request - response. These connections are used to address parts of a device which are accessible via the network. The data field of Explicit Messages contains both protocol data and application-specific commands.

I/O messages
I/O Messages, also referred to as Implicit Messages, are transmitted via UDP/IP. I/O Message connections are often established as One-to-Many relationships in the producer-consumer Multicast model of Ether-Net/IP. The data fields of I/O Messages contain no protocol information, but only time-critical I/O data. I/O Messages are a lot smaller than Explicit Messages, thus allowing for much faster processing. These messages are used to to transport application-specific I/O data over the network at regular intervals. The meaning of the data is pre-defined at the time the connection is established. I/O Messages can contain socalled Assemblies of several parameters that can be transmitted with a single message. The parameters for configuring EtherNet/IP communication are described in chapter 5 "Commissioning".

Command processing: Transmit data and receive data	The master sends a command to the drive system (slave) to execute a motion command, activate functions or request information from the slave. The slave executes the command and acknowledges it with a response message that may contain an error message if an error oc- curred.
	The master device can send new commands as soon as it has received acknowledgement concerning the current command. Acknowledgement information and error messages are included in the transmitted data in bit-coded form.
	The master must then continuously monitor for completion of the pro- cessing command by evaluating the acknowledgment from the slave. I/O messages are a special case. I/O messages are not acknowledged from the slave.

3.1.5 Communication via Explicit Message

An Explicit Message (EtherNet/IP-specific or vendor-specific) is used to read or write an individual parameter. See the product manual for an overview of all parameters.

The parameter is accessed by means of Class.Instance.Attribute as per CIP.

3.1.6 Communication via I/O Messages

	An I/O Message is used for realtime exchange of process data. I/O mes- sages lend themselves for motion commands. Transmission is very fast because the data is sent without administration data and a transmission acknowledgement from the recipient is not required.
	The master can control the operating states of the slave by means of I/O Message, for example, enable and disable the power stage, trigger a "Quick Stop", reset errors and activate operating modes.
	Changing operating states and activating operating modes must be done separately. An operating mode can usually only be activated if the operating state is already "Operation Enabled".
	A new operating mode can only be activated when the motor is at a standstill.
Output, Input	Output and Input refer to the direction of data transmission from the perspective of the master.
	 Output: Commands from the master to the slave, or originator to target.
	 Input: Status messages from the slave to the master, or target to originator.
Assembly	I/O Messages contain a collection (Assembly) of different parameters that are transmitted with a single message.
	The following Assemblies are defined for EtherNet/IP:
	Output Assembly, instance 112
	Input Assembly, instance 100
Polled I/O Connection	The Assemblies are used in a Polled I/O Connection . A Polled I/O Connection is initiated by the master with a Poll Command. The Slave responds with a Poll Response.

4 Installation

4 Installation

A WARNING

SIGNAL AND DEVICE INTERFERENCE

Signal interference can cause unexpected responses of device.

- Install the wiring in accordance with the EMC requirements.
- Verify compliance with the EMC requirements.

Failure to follow these instructions can result in death, serious injury or equipment damage.

For information on installation of the device and connecting the device to the fieldbus see the product hardware manual.

Page intentionally left blank

5 Commissioning

5

AWARNING LOSS OF CONTROL The product is unable to detect an interruption of the network link if Verify that connection monitoring is on. The shorter the time for monitoring, the faster the detection of the interruption. Failure to follow these instructions can result in death, serious injury or equipment damage. **A**WARNING UNINTENDED OPERATION The product is unable to detect an interruption of the network link if • Do not write values to reserved parameters. Do not write values to parameters unless you fully understand the function. Run initial tests without coupled loads.

- Verify that the system is free and ready for the movement before changing parameters.
- Verify the use of the word sequence with fieldbus communication.
- Do not establish a fieldbus connection unless you have fully understood the communication principles.

Failure to follow these instructions can result in death, serious injury or equipment damage.

Note: In loss of control instances the axis should decelerate to a stop.

5.1 Conf guration

In order to set up the MDrive, you must first connect the utility in MCode/TCP mode by connecting to the default IP 192.168.33.1:503 to set up the IP and Subnet Mask. The gateway IP address is not required.

If you are on a corporate network, you may need to check with your IT department to obtain a block of private IP addresses so as not to conflict with computers and other devices on the network.

The assigned IP address should always be within the IPv4 Private Network block (192.168.0.0 — 192.168.255.255).

MCode/TCP will always use port 503 and may communicate via TCP or UDP interchangeably. The applications for MODBUS/TCP may be set via the TCP/IP Configuration Tools and is available at IP 192.168.33.1:502.

anual SEM Port MODBUS Config E.I.P.	
MAC Address Image: Max Address Image: Max Address Image: Im	
IP Address /Subnet Mask/Alt.SEM Port	Tftpd Server IP
255 255 0 0 Write Subnet Mask (DEC.) Read All 192 168 1 200 Write	Ethemet Upgrade File Name Browse & set file name Write Read
Gateway IP (DEC.) 503 Alternate SEM Port Write	
EtherNet/IP <u>Set</u>	
Broadcast (Retrieve IP and serial no. of units on the netwo	rk) TCP/IP App Ver
UDP Broadcast Clear	

Once configured, you may connect to IP address you configured.

Figure 5.1: Configuration tab

5.1.2 Conf guring the Assembly object

The assembly object (0x04) may be mapped to read/write desired attributes. Each instance (100, input and 112, output) are set up using the EIP tab of the TCP Configuration Utility. To set the desired attribute, select the attribute you desire from the dropdowns.

These are listed as the equivalent MCode mnemonics and are labeled by data type. The GUI will only allow selection of the allowed data type.

Instance 100 - Input (T->O)	Instance 112 - Output (O -> T)
MV - BOOL IN - USINT	D DINT SL DINT MA DINT VI DINT
C1 JINT	RC USINT TE USINT
DINT	

Figure 5.2: Configuring the Assembly Objext 0x04

When completed click the "Set" button. This will set the attributes in the MDrive.

The last step is to export the $\ ^*.L5X$ (RSLogix 5000) file that maps the tags to the attributes.

File	Edit	View	Help			
	Downlo	ad user p	ogm.			
	Save EIP User Defined Data Types					
	Exit					

Figure 5.3: Export *.L5X file

- Select File > Save EIP User Defined Data Types
- Save the files (there will be 2 1 input, 1 output) to your hard drive

These files will be needed if using RSLogix as shown in the examples of Appendix A.

6 Diagnostics and troubleshooting

6

6.1 Fieldbus communication error diagnostics

	A properly operating fieldbus is essential for evaluating operating and error messages.				
Connections for f eldbus mode	If the product cannot be addressed via the fieldbus, first check the con- nections. The product manual contains the technical data of the device and information on network and device installation. Check the following:				
	Power connections to the device				
	Fieldbus cable and fieldbus wiring				
	Network connection to the device				
	You can also use the TCP/IP Configuration Utility for troubleshooting.				
Fieldbus function test	If the connections are correct, check the settings for the fieldbus ad- dresses. After correct configuration of the transmission data, test field- bus mode.				
	 In addition to the master that knows the product via the EDS file and addressing, activate a bus monitor that, as a passive device displays messages. 				
	2) Switch the supply voltage off and on.				
	 Observe the network messages that are generated briefly after the supply voltage is switched on. A bus monitor can be used to record the elapsed time between 				
Addressing, parameterization	If it is impossible to connect to a device, check the following:				
	 Addressing: Each network device must have a unique IP address and the correct subnet mask. 				

2) Parameterization: "Vendor ID" and "Product Code" must match the values stored in the EDS file.

6.2 Status LEDs

The MDrivePlus with Ethernet has two dual-color (red/green) LEDs visible from the back of the drive to give status and error indication of the EtherNet/IP connection.

Figure 6.1: Status indicator LEDs

Color	State	Description			
LED 1 – Netwo	rk Status (NS)				
None	Off	No power			
	Flashing	Recoverable fault or I/O connection timed out			
Green	Solid	Normal runtime operation (I/O connection allocated)			
	Flashing	Device is idle or not allocated to a client (PLC)			
Red/green	Alternating	Power-up self test in progress			
LED 2 – Modul	e Status (MS)				
None	Off	No power			
Red	Solid	Unrecoverable fault			
	Flashing	Minor, recoverable fault			
Green	Solid	Device operational			
	Flashing	Standby, device has not been configured			
Red/green	Alternating	Power-up self test in progress			

NOTE: The term I/O, in this context refers to EtherNet/IP communications protocol and is unrelated to the hardware Input - output points.

Table 6.1: Status indicator LEDs

7 Object model

7.1 Data types used in this object model

Data Type	Description
SINT	Signed 8-bit integer
INT	Signed 16-bit integer
DINT	Signed 32-bit integer
USINT	Unsigned 8-bit integer
UINT	Unsigned 16-bit integer
UDINT	Unsigned 32-bit integer
STRING	Character string (1 byte per character)
SHORTSTRINGnn	Character string (1 byte in length; up to <i>nn</i> characters)
BOOL	1 bit
BYTE	Bit string (8-bits)
WORD	Bit string (16-bits)
DWORD	Bit string (32-bits)
REAL	IEEE 32-bit single precision floating point

Table 7.1: Data types identification

7.2 Identity object (01_h – 1 instance)

The following tables contain the attribute, status, and common services information for the identity object.

Instance	Attribute ID	Name	Data type	Data value	Access rule
0x00	0x01	Revision	UINT	1	Get
0x01	0x01	Vendor number	UINT	243	Get
	0x02	Device type	UINT	43	Get
	0x03	Product code number	UINT	15362	Get
	0x04	Product major revision Product minor revision	USINT USINT	02 22	Get
	0x05	Status	WORD	See Table 7.4	Get
	0x06	Serial number	UDINT	Unique 32 bit value	Get
	0x07	Product name	SHORTSTRING32	MDrive	Get

Table 7.2: Identity object (01h - 1 instance)

V1.00, 01.2012

Service code	Implemented for	Service name	
	Class level	Instance levels	
0x05	No	Yes	Reset
0x0E	Yes	Yes	Get_Attribute_Single
0x10	No	Yes	Set_Attribute Single

Table 7.3: Identity object's common services

7.2.1 Identity object attribute 0x05 (Status)

This attribute represents the current status of the entire device. Its value changes as the state of the device changes. The status attribute is a WORD, with the following bit definitions:

15 12	11	10	9	8	7 4	3	2	1	0
Rsrvd	Maj UF	Maj RF	Min.UF	Min. RF	Ext Stat	Rsrvd	Config	Rsrvd	Owned

Bit(s)	Name	Meaning
0		1 indicates the device (or an object within the device) has an owner. Within the Master/ Slave paradigm the setting of this bit means that the Predefined Master/Slave Connection Set has been allocated to a master.
1		Reserved, always 0
2	Configured	1 indicates the application of the device has been configured to do something different than the "out-of-box" default. This shall not include configuration of the communications.
3		Reserved, always 0
4 – 7	Extended Device Status	Vendor–specific or as defined by table below. The EDS shall indicate if the device follows the public definition for these bits using the DeviceStatusAssembly keyword in the [Device] section of the EDS. If these bits are vendor specific then they shall be enumerated in the EDS using the Assembly and Parameter sections.
8	Minor Recoverable Fault	1 indicates the device detected a problem with itself, which is thought to be recoverable. The problem does not cause the device to go into one of the faulted states.
9	Minor Unrecoverable Fault	1 indicates the device detected a problem with itself, which is thought to be unrecoverable. The problem does not cause the device to go into one of the faulted states.
10	Major Recoverable Fault	TRUE indicates the device detected a problem with itself, which caused the device to go into the "Major Recoverable Fault" state.
11	Major Unrecoverable Fault	TRUE indicates the device detected a problem with itself, which caused the device to go into the "Major Unrecoverable Fault" state.
12 – 15		Reserved, always 0

Table 7.4: Bit definitions for status instance attribute of identity object

7.3 Assembly object (04_h – 4 instances)

Note that instance attributes show the default mapping of parameters to an attribute. This mapping may be changed to any MCode mnemonic of the same datatype using the TCP/IP Configuration Utility. See Section 5: Commissioning.

Instance	Attribute ID	Name	Dat		ata type		Data valu	е	Access rule
Class (Instance 0)	1	Revision	U		UINT		2		Get
	2	Max instan	се	UIN	NT (0xFF		Get
Input (T→O)	3	Bytes	MCode mnemo	nic	Description			Get	
Instance 100		BOOL	EF		Error fla	g	Same by	te	
		BOOL	MV		Moving	flag	1		
		USINT	IN		Read in	puts as a g	group		
		USINT	Pad						
		USINT	Pad						
		DINT	C1		Position	counter			
		DINT	C2		Encode	r counter			
		DINT	V	V		Velocity			
Output	3	Bytos	MCodo mnomonio		Description			Get/set	
(O→T)					Acceleration				
Instance 112					Deceleration				
			MA		Move to absolute position				
			MB Move to rela		relative p	relative position			
		USINT	BC	BC Bun curre		un current percent			
		USINT	HC		Hold current percent				
		BYTE	ОТ		Write digital outputs				
		USINT	Pad						
		DINT	SL SI		Slew				
		UDINT	VI Initi		Initial (starting) velocity				
		UDINT	VM		Maximu	m (final) v	elocity		
		UDINT	TE		Trip ena	able			
128 (0x80)		Input only I	/ heartbeat ¹			Heartbea	t	0	n/a
129 (0x81)		Listen only	heartbeat ²			Heartbea	t	0	n/a
Unused (n)		Configurati	on ³	on ³					

1. This instance allows clients to monitor input data without providing output data.

2 This instance allows clients (PLCs) to monitor input data without providing output data. To use this connection type, an owning connection must exist from a second client and the configuration of the connection must match exactly.

3 Configuration data is not required, but it must match if supplied. Contents of the configuration instance are yet to be determined.

Table 7.5: Assembly object (04h - 4 instances)

Service code	Implemented for	Service name	
	Class level	Instance levels	
0x0E	Yes	Yes	Get_Attribute_Single
0x10	Yes	Yes	Set_Attribute Single

Table 7.6: Assembly object's common services

7.4 TCP object (F5_h – 1 instance)

The following tables contain the attribute and common services information for the TCP Object.

Instance	Attribute ID	Name	Data type	Data value	Access rule
Class (Instance 0)	1	Revision	UINT	1	Get
Instance 1	1	Status*	DWORD	See Table 5-3.2*	Get
	2	Configuration capability*	DWORD	See Table 5-3.4*	Get
	3	Configuration control*	DWORD	0x0	Get/set
	4	Physical Link Object * Structure of		Below are defaults	Get
		Path Size	UINT	0x2	
		Path	Array of Word	0x20 0xF6 0x24 0x01	
	5	Interface configuration* Structure of		Below are defaults	Get
		IP Address	UDINT	192.168.33.1	
		Network Mask	UDINT	255.255.0.0	
		Gateway Address	UDINT	192.168.1.200	
		Name Server	UDINT	0x0	
		Name Server 2	UDINT	0x0	
		Domain Name Size	UINT	0x0	
		Domain Name	STRING	0x0	
	6	Host name* Structure of		Below are defaults	Get
		Host Name Size	UINT	0x0]
		Host Name	STRING	0x0]

* For more details on these attributes, see *Volume 2: EtherNet/IP Ad-aptation of CIP*, Section 5-3.2 from ODVA. Tables reference in the data value column are located in that document.

Table 7.7:	TCP ob	ject (05h	– 1 iı	nstance)
------------	--------	-----------	--------	----------

Service code	Implemented for		Service name
	Class level	Instance levels	
0x0E	Yes	Yes	Get_Attribute_Single
0x10	No	Yes	Set_Attribute Single

Table 7.8: Assembly object's common services

7.5 Ethernet Link object (F6_h – 1 instance)

The following tables contain the attribute and common services information for the Ethernet Link Object.

Instance	Attribute ID	Name	Data type	Data value	Access rule
Class (Instance 0)	1	Revision	UINT	1	Get
Instance 1	1	Interface speed*	DWORD	0	Get
	2	Interface flag*	DWORD	See Table 5-4.44*	Get
	3	Physical address	ARRAY	MAC Address	Get

* For more details on these attributes, see *Volume 2: EtherNet/IP Ad-aptation of CIP*, Section 5-3.2 from ODVA. Tables reference in the data value column are located in that document.

Table 7.9: Ethernet object (0xF6 - 1 instance)

Service code	Implemented for		Service name
	Class level	Instance levels	
0x0E	Yes	Yes	Get_Attribute_Single

Table 7.10: Assembly object's common services

Page intentionally left blank

8 Manufacturer specif c objects

8.1 Preliminary

This section contains the objects specific to the MDrivePlus and MDrive Hybrid Motion Control devices.

It is divided into Object classes by functional grouping, these are:

Object	Description
0x64	Setup instructions
0x65	Miscellaneous instructions and flags
0x66	Motion instructions and flags
0x67	I/O instruction variables and flags
0x68	Position related instructions and flags
0x69	Encoder related instructions and flags
0x6A	Hybrid specific instructions and flags

Table 8.1: Object class groupings

Access	Description
RO	Readable only
WO	Writable only
WONE	Writable only , no equal sign
RW	Readable and writable, unconditional
RW_IO	Readable always, Writable only if I/O connection present

Table 8.2: Access types identification

NOTE: References in the section to "I/O" refer to the control of the hardware input/output points on the device.

8.1.1 MCode compatibility

Each attribute on the object class grouping references a 1 or 2 character MCode mnemonic.

Please reference the *MCode Programming and Reference Manual,* which is located on the web site at http://www.imshome.com for detailed usage instructions, value ranges and restrictions.

8.2 Setup object (64_h – 1 instance)

The Setup object contains attributes configuring basic setup parameters.

Instance	Attribute ID	Description	Data type	MCode	Access
Class (Instance 0)	0x01	Revision	UINT	—	RO
Instance 1	0x01	Software reset enable	USINT	CE	RW
	0x02	Clock mode enable	BOOL	СМ	RW
	0x03	Clock ratio	FLOAT	CR	RW
	0x04	Output clock width	USINT	CW	RW
	0x05	Drive enable	BOOL	DE	RW
	0x06	Warning temperature	USINT	WT	RW

Table 8.3: Setup object (64h – 1 instance)

8.3 Miscellaneous object (65_h – 1 instance)

The Miscellaneous object contains attributes for reading and/or setting miscellaneous variables and flags.

Instance	Attribute ID	Description	Data type	MCode	Access
Class (Instance 0)	0x01	Revision	UINT	—	RO
Instance 1	0x01	Busy (program running) flag	BW	BY	RO
	0x02	Clock mode enable	BOOL	СМ	RW
	0x03	Output clock width	USINT	CW	RW
	0x04	Error flag	BOOL	EF	RW
	0x05	Read/clear error condition	UNIT16	ER	RW
	0x06	Read internal temperature	INT	IT	RO
	0x07	Read/set user register 1 value	DINT	R1	RW
	0x08	Read/set user register 2 value	DINT	R2	RW
	0x09	Read/set user register 3 value	DINT	R3	RW
	0x0A	Read/set user register 4 value	DINT	R4	RW
	0x0B	Read device serial number	STRING	SN	RO
	0x0C	Read hardware/firmware version number	STRING	VR	RO

Table 8.4: Miscellaneous object ($65_h - 1$ instance)

8.4 Motion object (66_h – 1 instance)

The Motion object contains attributes for issuing motion commands and reading and/or writing motion related variables or flags.

Instance	Attribute ID	Description	Data type	MCode	Access
Class (Instance 0)	0x01	Revision	UINT	—	RO
Instance 1	0x01	Read/set acceleration	UDINT	А	RW_IO
	0x02	Read/set deceleration	UDINT	D	RW_IO
	0x03	Read/set motor holding current percent	USINT	HC	RW_IO
	0x04	Read/set holding current time delay	UINT	HT	RW
	0x05	Read/set jog mode enable/disable	BOOL	JE	RW
	0x06	Read/set limit switch response mode	USINT	LM	RW
	0x07	Command absolute move	DINT	MA	RW_IO
	0x08	Command relative move	DINT	MR	RW_IO
	0x09	Read/set microstep resolution	UINT	MS	RW
	0x0A	Read/set motor settling delay time	UINT	MT	RW
	0x0B	Read axis in motion flag	BOOL	MV	RO
	0x0C	Read/set motor run current percent	USINT	RC	RW_IO
	0x0D	Command slew at constant velocity	DINT	SL	RW_IO
	0x0E	Read current velocity	DINT	V	RO
	0x0F	Read velocity changing flag	BOOL	VC	RO
	0x10	Read/set initial (starting) velocity	UDINT	VI	RW_IO
	0x11	Read/sey maximum (terminal) velocity	UDINT	VM	RW_IO

Table 8.5: Motion object ($65_h - 1$ instance)

8.5 I/O object (67_h – 1 instance)

The I/O object contains attributes for issuing I/O commands and reading and/or writing I/O related variables or flags.

NOTE: Attributes in this object relate solely to the configuration and control of the hardware Input–Output points and have no bearing on EtherNet/IP communications protocol I/O messaging.

Instance	Attribute ID	Description	Data type	MCode	Access
Class (Instance 0)	0x01	Revision	UINT	—	RO
Instance 1	0x01	Read/set digital filtering for input 1	USINT	D1	RW
	0x02	Read/set digital filtering for input 2	USINT	D2	RW
	0x03	Read/set digital filtering for input 3	USINT	D3	RW
	0x04	Read/set digital filtering for input 4	USINT	D4	RW
	0x05	Read/set digital filtering for analog input	USINT	D5	RW
	0x06	Read/set filtering for the capture input	USINT	FC	RW
	0x07	Read/set filtering for the motion inputs	USINT	FM	RW
	0x08	Read the value of the analog input	UINT	15	RO
	0x09	Read the state of the encoder index mark	BOOL	16	RO
	0x0A	Read inputs 1 — 4 as a BCD group	USINT	IL	RO
	0x0B	Read all inputs as a BCD group	USINT	IN	RO
	0x0C	Read internal temperature	INT	IT	RO
	0x0D	Set outputs 1 — 4 as a group	USINT	OL	RW
	0x0E	Set all outputs as a group	USINT	ОТ	RO
	0x0F	Set/read I/O point 1 as type, active, sink/source	STRING	S1	RW
	0x10	Set/read I/O point 2 as type, active, sink/source	STRING	S2	RW
	0x11	Set/read I/O point 3 as type, active, sink/source	STRING	S3	RW
	0x12	Set/read I/O point 4 as type, active, sink/source	STRING	S4	RW
	0x13	Set/read analog input configuration	STRING	S5	RW
	0x14	Set/read clock I/O point 7 as type, active, sink/source	STRING	S7	RW
	0x15	Set/read clock I/O point 8 as type, active, sink/source	STRING	S8	RW
	0x16	Set/read capture/trip I/O point 8 as type, active	STRING	S13	RW

Table 8.6: I/O object (66_h - 1 instance)

8.6 Position object (68_h – 1 instance)

The position object contains attributes for reading and/or writing position related variables or flags.

Instance	Attribute ID	Description	Data type	MCode	Access
Class (Instance 0)	0x01	Revision	UINT		RO
Instance 1	0x01	Read/set counter 1 (position)	DINT	C1	RW
	0x02	Read/set homing mode	USINT	НМ	
	0x03	Read/set position	DINT	Р	RW
	0x04	Read position capture at trip	DINT	PC	RO
	0x05	Read/set trip enable	USINT	TE	RW

Table 8.7: Position object $(68_h - 1 \text{ instance})$

8.7 Encoder object (69_h – 1 instance)

The encoder object contains attributes for reading and/or writing encoder related variables or flags.

Instance	Attribute ID	Description	Data type	MCode	Access
Class (Instance 0)	0x01	Revision	UINT	—	RO
Instance 1	0x01	Read/set counter 2 (encoder)	DINT	C1	RW
	0x02	Read/set encoder deadband	UINT	DB	RW
	0x03	Enable/disable encoder functions	BOOL	EE	RW
	0x04	Read/set home to index mode	USINT	н	RW
	0x05	Read encoder index mark	BOOL	16	RO
	0x06	Enable/disable position maintenance (non-hybrid only)	BOOL	PM	RW
	0x07	Read/set stall factor (non-hybrid only)	UINT	SF	RW
	0x08	Read/set stall detect mode (non-hybrid only)	BOOL	SM	RW
	0x09	Read stall flag (non-hybrid only)	BOOL	ST	RO

Table 8.8: Encoder object (69_h - 1 instance)

8.8 Hybrid specif c object (6A_h – 1 instance)

Instance	Attribute ID	Description	Data type	MCode	Access
Class (Instance 0)	0x01	Revision	UINT	—	RO
Instance 1	0x01	Read hybrid status	USINT	AF	RO
	0x02	Read/set hybrid operating mode	USINT	AS	RW
	0x03	Read/set calibration mode	STRING	CA	RW
	0x04	Read/set control bounds	USINT	СВ	RW
	0x05	Read set calibration current percent	USINT	CC	RW
	0x06	Clear locked rotor flag	BOOL	CF	CMD
	0x07	Read/set calibration time	UINT	СТ	RW
	0x08	Read/set remote encoder line count	UINT	EL	RW
	0x09	Read/set lead limit	UDINT	LD	RW
	0x0A	Read lead/lag position error	DINT	LL	RO
	0x0B	Read/set lag limit	UDINT	LG	RW
	0x0C	Read state of rotor locked/unlocked	BOOL	LR	RO
	0x0D	Read set locked rotor timeout time	UINT	LT	RW
	0x0E	Read set make-up speed	UDINT	MF	RW
	0x0F	Read/set make-up mode	STRING	MU	RW
	0x10	Command calibration start	USINT	SC	WONE
	0x11	Read/set system speed	USINT	SS	RW
	0x12	Read/set torque direction	BOOL	TD	RW
	0x13	Read/set torque current percent	USINT	TQ	RW
	0x14	Read/set torque speed	USINT	TS	RW

The hybrid specific object contains attributes for issuing hybrid commands and reading and/or writing hybrid related variables or flags.

Table 8.9: Hybrid specific object (6A_h - 1 instance)

9 Glossary

9.1 Units and conversion tables

The value in the specified unit (left column) is calculated for the desired unit (top row) with the formula (in the field).

Example: conversion of 5 meters [m] to yards [yd] 5 m / 0.9144 = 5.468 yd

9.1.1 Length

	in	ft	yd	m	cm	mm
in	—	/ 12	/ 36	* 0.0254	* 2.54	* 25.4
ft	* 12	—	/ 3	* 0.30479	* 30.479	* 304.79
yd	* 36	* 3	—	* 0.9144	* 91.44	* 914.4
m	/ 0.0254	/ 0.30479	/ 0.9144	—	* 100	* 1000
cm	/ 2.54	/ 30.479	/ 91.44	/ 100	—	* 10
mm	/ 25.4	/ 304.79	/ 914.4	/ 1000	/ 10	_

9.1.2 Mass

	lb	oz	slug	kg	g
lb	_	* 16	* 0.03108095	* 0.4535924	* 453.5924
oz	/ 16	_	* 1.942559*10 ⁻³	* 0.02834952	* 28.34952
slug	/ 0.03108095	* 1.942559*10 ⁻³	—	* 14.5939	* 14593.9
kg	/ 0.453592370	/ 0.02834952	/ 14.5939	—	* 1000
g	/ 453.592370	/ 28.34952	/ 14593.9	/ 1000	

9.1.3 Force

	lb	oz	р	dyne	N
lb	—	* 16	* 453.55358	* 444822.2	* 4.448222
oz	/ 16	—	* 28.349524	* 27801	* 0.27801
р	/ 453.55358	/ 28.349524	_	* 980.7	* 9.807*10 ⁻³
dyne	/ 444822.2	/ 27801	/ 980.7	—	/ 100*10 ³
N	/ 4.448222	/ 0.27801	/ 9.807*10 ⁻³	* 100*10 ³	—

9.1.4 Power

	НР	W
HP	—	* 745.72218
W	/ 745.72218	—

9.1.5 Rotation

	min ⁻¹ (RPM)	rad/s	deg./s
min ⁻¹ (RPM)	—	* π / 30	* 6
rad/s	* 30 / π	—	* 57.295
deg./s	/ 6	/ 57.295	—

9.1.6 Torque

	lb∙in	lb·ft	oz∙in	Nm	kp·m	kp·cm	dyne∙cm
lb∙in	—	/ 12	* 16	* 0.112985	* 0.011521	* 1.1521	* 1.129*10 ⁶
lb∙ft	* 12	—	* 192	* 1.355822	* 0.138255	* 13.8255	* 13.558*10 ⁶
oz∙in	/ 16	/ 192	—	* 7.0616*10 ⁻³	* 720.07*10 ⁻⁶	* 72.007*10 ⁻³	* 70615.5
Nm	/ 0.112985	/ 1.355822	/ 7.0616*10 ⁻³	—	* 0.101972	* 10.1972	* 10*10 ⁶
kp·m	/ 0.011521	/ 0.138255	/ 720.07*10 ⁻⁶	/ 0.101972	_	* 100	* 98.066*10 ⁶
kp·cm	/ 1.1521	/ 13.8255	/ 72.007*10 ⁻³	/ 10.1972	/ 100	—	* 0.9806*10 ⁶
dyne∙cm	/ 1.129*10 ⁶	/ 13.558*10 ⁶	/ 70615.5	/ 10*10 ⁶	/ 98.066*10 ⁶	/ 0.9806*10 ⁶	

9.1.7 Moment of inertia

	lb∙in ²	lb∙ft ²	kg·m²	kg·cm²	kp·cm·s²	oz∙in²
lb∙in²	—	/ 144	/ 3417.16	/ 0.341716	/ 335.109	* 16
lb·ft ²	* 144	—	* 0.04214	* 421.4	* 0.429711	* 2304
kg·m²	* 3417.16	/ 0.04214	—	* 10*10 ³	* 10.1972	* 54674
kg·cm²	* 0.341716	/ 421.4	/ 10*10 ³	—	/ 980.665	* 5.46
kp·cm·s²	* 335.109	/ 0.429711	/ 10.1972	* 980.665	—	* 5361.74
oz∙in²	/ 16	/ 2304	/ 54674	/ 5.46	/ 5361.74	—

9.1.8 Temperature

	°F	°C	К	
°F	—	(°F - 32) * 5/9	(°F - 32) * 5/9 + 273.15	
°C	°C * 9/5 + 32	—	°C + 273,15	
К	(K - 273.15) * 9/5 + 32	K - 273.15	—	

9.1.9 Conductor cross section

AWG	1	2	3	4	5	6	7	8	9	10	11	12	13
mm ²	42.4	33.6	26.7	21.2	16.8	13.3	10.5	8.4	6.6	5.3	4.2	3.3	2.6
AWG	14	15	16	17	18	19	20	21	22	23	24	25	26
mm ²	2.1	1.7	1.3	1.0	0.82	0.65	0.52	0.41	0.33	0.26	0.20	0.16	0.13

9.2 Terms and Abbreviations

- AC Alternating current
- Acceleration The time rate of change of velocity with respect to a fixed reference frame. The commanded step rate is started at a base velocity and accelerated at a slew velocity at a defined and controlled rate or rate of changes.
 - ASCII American Standard Code for Information Interchange. Standard for coding of characters.
- *Back Electro-Motive Force (Back EMF)* Also known as regeneration current, the reversed bias generated by rotation of the magnetic field across a stator's windings. Sometimes referred to as counter EMF.
 - CAN (Controller Area Network), standardized open fieldbus as per ISO 11898, allows drives and other devices from different manufacturers to communicate.
 - *CANopen* CANopen is a CAN-based higher layer protocol. It was developed as a standardized embedded network with highly flexible configuration capabilities. CANopen was designed motion oriented machine control networks, such as handling systems. It is used in many various fields, such as medical equipment, off-road vehicles, maritime electronics, public transportation, building automation, etc
 - *Closed Loop System* In motion control, this term describes a system wherein a velocity or position (or both) sensor is used to generate signals for comparison to desired parameters. For cases where loads are not predictable, the closed loop feedback from an external encoder to the controller may be used for stall detection, position maintenance or position verification.
 - Daisy Chain This term is used to describe the linking of several devices in sequence, such that a single signal stream flows through one device and on to another

DC	Direct current
Deadband	A range of input signals for which there is no system response.
Default value	Factory setting.
Detent Torque	The periodic torque ripple resulting from the tendency of the magnetic rotor and stator poles to align themselves to positions of minimal reluc- tance. The measurement is taken with all phases de-energized.
Direction of rotation	Rotation of the motor shaft in a clockwise or counterclockwise direction of rotation. Clockwise rotation is when the motor shaft rotates clockwise as you look at the end of the protruding motor shaft.
DOM	The Date of manufacturing on the nameplate of the device is shown in the format DD.MM.YY, e.g. 31.12.06 (December 31, 2006).
Duty Cycle	For a repetitive cycle, the ratio of on time to total cycle time.
EMC	Electromagnetic compatibility
Encoder	Sensor for detection of the angular position of a rotating component. The motor encoder shows the angular position of the rotor.
Error class	Classification of errors into groups. The different error classes allow for specific responses to faults, e.g. by severity.
Fatal error	In the case of fatal error, the drive is not longer able to control the motor, so that an immediate switch-off of the drive is necessary.
Fault	Operating state of the drive caused as a result of a discrepancy between a detected (computed, measured or signaled) value or condition and the specified or theoretically correct value or condition.
Fault reset	A function used to restore the drive to an operational state after a detected fault is cleared by removing the cause of the fault so that the fault is no longer active (transition from state "Fault" to state "Operation Enable").
Forcing	Forcing switching states of inputs/outputs. Forcing switching states of inputs/outputs.
Full Duplex	The transmission of data in two directions simultaneously. For example, a telephone is a full-duplex device because both parties can talk at the same time.

Ground Loop	A ground loop is any part of the DC return path (ground) that has more than one possible path between any two points.
Half Duplex	A ground loop is any part of the DC return path (ground) that has more than one possible path between any two points.
Half Step	This term means that the motor shaft will move a distance of 0.9 degree (400 steps per shaft revolution) instead of moving 1.8 degree per digital pulse.
Hybrid Motion Technology™ (HMT)	A motor control technology representing a new paradigm in brushless motor control. By bridging the gap between stepper and servo perfor- mance, HMT offers system integrators a third choice in motion system design.
Hybrid Motors	Hybrid stepper motors feature the best characteristics of PM and VR motors. Hybrid steppers are best suited for industrial applications because of high static and run torque, a standard low step angle of 1.8°, and the ability to Microstep. Hybrid stepper motors offer the ability to precisely position a load without using a closed-loop feedback device such as an encoder.
Holding Torque	The maximum torque or force that can be externally applied to a stopped, energized motor without causing the rotor to rotate continuously. This is also called "static torque".
I/O	Inputs/outputs
Inc	Increments
Index pulse	Signal of an encoder to reference the rotor position in the motor. The encoder returns one index pulse per revolution.
Inertia	A measure of an object's resistance to a change in velocity. The larger an object's inertia, the greater the torque required to accelerate or decelerate it. Inertia is a function of an object's mass and shape. For the most efficient operation, the system-coupling ratio should be selected so that the reflected inertia of the load is equal to or no greater than 10 times the rotor inertia of the stepper motor.
Inertia (Refected)	Inertia as seen by the stepper motor when driving through a speed change, reducer or gear train.
Lag	The amount (in full motor steps) that the rotor lags the stator. Lag condi- tions are caused by loading on the motor shaft, as during transient load- ing or rapid acceleration.

Lead	The amount (in full motor steps) that the rotor leads the stator. Lead conditions are caused by an overhauling load, as during periods of rapid deceleration.
Limit switch	Switch that signals overtravel of the permissible range of travel.
Load	Any external resistance (static or dynamic) to motion that is applied to the motor.
Locked rotor	When the lag/lead limit is reached, a timer starts a countdown that is determined by the user. The locked rotor will assert itself by triggering a flag and, depending on the selected mode, by disabling the output bridge.
Loss of synchronization	In traditional stepper systems, when the lead/lag relationship of the rotor and stator reaches two full motor steps, the alignment of the magnetic fields is broken and the motor will stall in a freewheeling state. Hybrid Motion Technology eliminates this.
Microstepping	A control electronic technique that proportions the current in a stepper motor's windings to provide additional intermediate positions between poles. Produces smooth rotation over a wide range and high positional resolution. Typically, step resolutions range from 400 to 51,200 steps per shaft revolution.
Motor phase current	The available torque of a stepper motor is determined by the mo- tor phase current. The higher the motor phase current the higher the torque.
Multidrop	A communications configuration in which several devices share the same transmission line, although generally only one may transmit at a time. This configuration usually uses some kind of polling mechanism to address each connected device with a unique address code.
NEMA	The acronym for the National Electrical Manufacturer's Association, an organization that sets standards for motors and other industrial electrical equipment.
Node guarding	Monitoring of the connection with the slave at an interface for cyclic data traffic.
Open Loop System	An open loop motion control system is where no external sensors are used to provide position or velocity feedback signals, such as encoder feedback of position.

Opto-Isolated	A method of sending a signal from one piece of equipment to another without the usual requirement of common ground potentials. The signal is transmitted optically with a light source (usually a Light Emitting Diode) and a light sensor (usually a photo-sensitive transistor). These optical components provide electrical isolation.
Parameter	Device data and values that can be set by the user.
Persistent	Indicates whether the value of the parameter remains in the memory after the device is switched off.
PLC	Programmable logic controller
Position lead/lag	The HMT circuitry continually tracks the position lead or lag error, and may use it to correct position.
Position make-up	When active, the position make-up can correct for position errors oc- curring due to transient loads. The lost steps may be interleaved with incoming steps, or reinserted into the profile at the end of a move.
Power stage	The power stage controls the motor. The power stage generates cur- rents for controlling the motor on the basis of the positioning signals from the controller.
Pull-In Torque	This is the maximum torque the stepper motor can develop when instan- taneously started at that speed.
Pull-Out Torque	This is the maximum torque that the stepper can develop once an ac- celeration profile has been used to "ramp" it to the target speed.
Quick Stop	Function used to enable fast deceleration of the motor via a command or in the event of a malfunction.
Resolution	The smallest positioning increment that can be achieved.
Resonance	The frequency that a stepper motor system may begin to oscillate. Pri- mary resonance frequency occurs at about one revolution per second. This oscillation will cause a loss of effective torque and may result in loss of synchronism. The designer should consider reducing or shifting the resonance frequency by utilizing half step or micro-step techniques or work outside the primary resonance frequency.
Rotor	The moving part of the motor, consisting of the shaft and the magnets. These magnets are similar to the field winding of a brush type DC motor

. Rotor Inertia	The rotational inertia of the rotor and shaft.
RS485	Fieldbus interface as per EIA-485 which enables serial data transmission with multiple devices.
Sinking Current	Refers to the current flowing into the output of the chip. This means that a device connected between the positive supply and the chip output will be switched on when the output is low.
Slew	The position of a move profile where the motor is operating at a constant velocity
Sourcing Current	Refers to the current flowing out of the output of the chip. This means that a device connected between the chip output and the negative sup- ply will be switched on when the output is high.
Stall detection	Stall detection monitors whether the index pulse is always correctly trig- gered at the same angle position of the motor shaft.
Stator	The stationary part of the motor. Specifically, it is the iron core with the wire winding in it that is pressed into the shell of the frame. The winding pattern determines the voltage constant of the motor.
Torque ramp	Deceleration of the motor with the maximum possible deceleration, which is only limited by the maximum permissible current. The higher the permissible braking current, the stronger the deceleration. Because energy is recovered up depending on the coupled load, the voltage may increase to excessively high values. In this case the maximum permis- sible current must be reduced.
Variable current control	When active, variable current control will control the motor current as such to maintain the torque and speed on the load to what is required by the profile. This leads to reduced motor heating and greater system efficiency.
Warning	If not used within the context of safety instructions, a warning alerts to a potential problem detected by a monitoring function. A warning is not a fault and does not cause a transition of the operating state. Warnings belong to error class 0.
Watchdog	Unit that monitors cyclic basic functions in the product. Power stage and outputs are switched off in the event of faults.
Zero crossing	The point in a stepper motor where one phase is at 100% current and the other is at 0% current.

A Setting up an MDrive using RS Logix 5000

A.1 Adding the MDrive

This appendix shows an example of adding an MDrive EtherNet/IP unit to an RS Logix 5000 project. The PLC used in this example was an Rockwell Automation Compact Logix L23E. Step 1 1) Open a new project 2) Click the [+] next to I/O Configuration, Under your [PLC Name] right-click "Ethernet" Select "New Module" 3) - Gontroller MDriveTest 🧭 Controller Tags Controller Fault Handler 🗀 Power-Up Handler 🖻 🔠 Tasks 🖻 🥽 MainTask 🗄 🕞 MainProgram Unscheduled Programs 🗄 🔠 Motion Groups - Dingrouped Axes Add-On Instructions 🖻 🔠 Data Types 🛛 🚂 User-Defined 🕀 🙀 Strings 🚂 Add-On-Defined 🛨 🙀 Predefined 🗄 🔙 Module-Defined Trends E GI/O Configuration 🖻 🚝 CompactLogix5323E-QB1 System 1769-L23E-QB1 MDriveTest 🖻 🛷 1769-L23E-QB1 Ethernet Port LocalENB 윪 Ethei 9 New Module... 🖻 🎹 Compact 🖻 🔠 Embe Ctrl+V Paste 1 🕼 uts [2] Embedded OB16 Discrete_Outputs Expansion I/O

Figure A.1: Adding a new module

- 4) Under "communications" of the Select Module" dialog Select 'ETHERNET-MODULE Generic Ethernet Module'
- 5) Click OK

Manufactoria	Description	Vander
Module 	Description ne 10/100 Mbps Ethernet Port on CompactLogix5335E 1788 Ethernet to DeviceNet Linking Device 1788 10/100 Mbps Ethernet Bridge, Twisted-Pair Media 1788 10/100 Mbps Ethernet Bridge w/Enhanced Web Serv 1794 10/100 Mbps Ethernet Adapter, Twisted-Pair Media 1794 10/100 Mbps Ethernet Adapter, Twisted-Pair Media 1794 10/100 Mbps Ethernet Adapter, Twisted-Pair Media 1794 10/100 Mbps Ethernet Port on DriveLogix5730 GE Generic EtherNet/IP CIP Bridge ULE Generic Ethernet Module SoftLogix5800 EtherNet/IP Ethernet Adapter, Twisted-Pair Media	Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Allen-Bradley Parker Hannif
	Find	Add Eavorite
By Category	By Vendor Favorites OK Cancel	Help

Figure A.2: Generic Ethernet Module

Step 2 A "New Module" dialog will appear. Fill in the following information as follows:

Name: MDrive (IMPORTANT!)

Description: MDriveHybrid (Desc. is at user discretion)

Comm Format: Data - SINT

IP Address: 192.168.33.1

Connection Parameters:

	Assembly Instance	Size
Input	100	16
Output	112	36
Configuration	1	0

New Module					
Type: Vendor: Parent: Name:	ETHERNET-MODULE Generic Ethern Allen-Bradley LocalENB	et Module	ameters		
Description:	MDriveHybrid	Input:	Assembly Instance: 100	Size:)
Comm Format Address / H	: Data - SINT	Configuration:		0 + (8-bit)
C Host Na	ame:	Status Output:	, 	,	
🔽 Open Mod	ule Properties	ОК	Can	cel Help	

Figure A.3: New module setup

Module Properties: LocalENB (ETHERNET-MODULE 1.1)
General Connection* Module Info
Requested Packet Interval (RPI): 20.0 ms (1.0 - 3200.0 ms) Inhibit Module Major Fault On Controller If Connection Fails While in Run Mode
Module Fault
Status: Offline OK Cancel Apply Help

Step 3 Set "Request Packet Interval (RPI)" under the connection tab to 20ms.

Figure A.4: Request Packet Interval setting

Step 4 Under "Data Types", right-click on "User-Defined and select "Import Data Type".

Figure A.5: Import routine

Select and import both MDrive_Inputs_T2O.L5X and MDrive_Outputs_ O2T.L5X . These files are created using the TCP/IP Configuration Utility and exported as shown in Section 5.1.2 of this document.

Import Data Ty	per:						×
Look jn	MDrive Ether	Net_IP	•	+ 0	d	.	
My Recent Documents Desktop My Documents My Consuler	新代Prive_Srputs 部MDrive_Outpu	_T20.15X 65_027.15X					
My Network Places	File pame: Files of type	F FISLogis SD00104L Pairs I'LL	94D		•		Import Cancel
	Files gontaining	Data Type					Help
	Intg	Calla Types			τ.		

	Name	Data Type	Description
1	+Local:2:0	AB:Embedded	
ā	_ -MDrive_1:C	AB:ETHERNE	
ā	MDrive_1:I	AB:ETHERNE	
ð	MDrive_1:I.Data	SINT[16]	
1	MDrive_1:I.Dat ▼	SINT	
Ŕ	MDrive 1:I.Data[1]	SINT	×
	<u>C</u> ontroller		
	<u>P</u> rogram		
Sho	w: Show All		>>

In the Program Window, select the Synchronous Copy File Function (CPS). For the Source, The MDrive Input Data [0] tag.

Figure A.7: Synchronous Copy File Function

For the Destination, create a Tag using the User Defined data type MDrive_Inputs_T2O as the Data Type.

Select Data Type	
Data Types:	
MDrive_Inputs_T20	ОК
MAIN_VALVE_CONTROL	Cancel
MAXIMUM_CAPTURE	Help
MDrive_Inputs_T20	
MDrive_Outputs_021	
Array Dimensions	
Dim 2 Dim 1 Dim 0 0 - 0 -	
Show Data Types by Groups	

Figure A.8: Select data type

Set the Length to 16.

On the following rung, repeat the above process using a created Tag using the MDrive_Outputs_T2O data type as the source, The MDrive Output Data [0] as the destination and 36 as the length

🗎 MainPre	ogram - MainRoutine*	
陶雪		
O		CPS- Synchronous Copy File Source MDrive_1:I.Data[0] Dest MDrive1_In Length 16
1		CPS Synchronous Copy File Source MDrive1_Out Dest MDrive_1:O.Data[0] Length 36
(End)		
		111
		~
Main	Routine*	Þ

Figure A.9: Main program window

This associates the Tags created with the import of the user defined data types with the data in the implicit data object in the MDrive.

Step 5 Add another rung to the routine created above. This rung should include a N/O contact as well and a Move (MOV) command. For the Contact, create a Tag called "Jog". In the Move, select the Source to be a Jog speed in micosteps/sec. Set the Destination to be the "SL" parameter within the MDrive Out Tag created in Step 4. Copy this rung, changing the contact Tag to "Step", and set the source to be 0.

> Download the application and go online with the project. Toggling the "Jog" contact will cause the connected Mdrive to Slew at the requested speed. Toggling the "Stop" contact will make it stop.

A.2 Explicit messaging

Explicit messaging is used to transfer data that does not require continual updates. All MDrive parameters may be accessed via explicit messaging

🖹 MainProgram - MainRoutine 📃 🗖 🔀					
曲雪雨	MMM F F F F F F F F F F F F F F F F F F				
5	Move Source Dest MD	MOV MDrive1_Vel 0 ← rive1_Vel_Disp 0 ←			
6	Query_SN MSG Message Control Ge				

Figure A.11: Explicit message Query_SN

The message instruction must be configured to read or write to a specific Attribute (parameter) in the MDrive.

In this case, the Message is set to read the Serial Number from the MDrive and move it into a Tag labeled "Ser_Num". This is done by chosing the "Get Attribute Single" from the Service Type pull-down and selecting the appropriate Class, Instance and Attribute. This information can be found in Section 8 of the Ethernet/IP Fieldbus Manual.

A.2.1 Formatting the message

1) Add a message instruction (MSG), create a new tag for the message Get_SN (properties, base tag type, message data typt, controller scope) and click the configure button.

Message Configuration - Get_SN						
Configuration Communication Tag						
Message <u>Type:</u> CIP Generic	-					
Service Get Attribute Single 🔹	Source Element:					
Service The area of the	Source Length: 0 (Bytes)					
Code: le (Hex) Llass: [65 (Hex)	Destination Ser_Num					
Instance: 1 Attribute: b (Hex)	New Tag					
🔘 Enable 🛛 Enable Waiting 🔵 Start	오 Done 🛛 Done Length: 15					
Error Code: Extended Error Code: Error Path: Error Text:	🔲 Timed Out 🗲					
ОК	Cancel Apply Help					

Figure A.12: Message configuration dialog

2) Set the message parameters as shown in the screen capture above in accordance with Table A.1,

Field	Description
Message Type	The message type for MDrive parameters will be CIP Generic
Service Type	The service type for MDrive, in this case will be Get Attribute Single. If setting a parameter the service type would be Set Attribute Single. Available services depend on the class and instance being read or written.
Service code	This field will be read only when Set Attribute Single or Get Attribute Single is the service type.
Class	This is the EtherNet/IP class. For this exercise it is 64 _h Miscellaneous. Refer to Section 8: Manufacturer specific objects, for a listing of supported classes, instances and attributes.
Instance	This is the EtherNet/IP instance or object. Refer to Section 8: Manufacturer specific objects, for a listing of supported classes, instances and attributes.
Attribute	The attribute represents, in this exercise, the hex number (0x0B), of the instance assigned to the Read_Serial_ Number command. Refer to Section 8: Manufacturer specific objects, for a listing of supported classes, instances and attributes.

Table A.1: Message configuration

Page intentionally left blank

B Upgrading the Ethernet controller f rmware

B.1 Upgrading the Ethernet controller f rmware

NOTE: This refers strictly to the controller firmware for the Ethernet interface. It is NOT an upgrade to the MDrive operating firmware.

It is recommended that you DO NOT perform this upgrade unless so instructed by the IMS SEM Applications department.

Please review this in detail before performing the upgrade, each step must be completed in order.

Requirements The latest versions of the software and firmware are available on the web site under the downloads tab at http://www.schneider-electric-motion.us

- 1) TCP/IP Configuration Tool (Installed)
- 2) TFTPD Firmware Server (Installed)
- Ethernet firmware upgrade file IMPORTANT: Unzip upgrade *.S19 file to the installation directory of the TCP/IP Configuration Tool

This process will utilize the firmware upgrade area on the configuration tab of the TCP/IP Configuration Tool to set up.

B.1.1 To begin

- 1) Open the TCP/IP Configuration Tool
- 2) Click the config tab, if not already active.
- 3) Connect to your Ethernet MDrive over TCP.

B.1.2 Set the Tftpd Server IP

- a) Click "Get Local IP"
- b) Click "Write"
- c) Tftpd Server IP should read 'OK'

Figure B.2: Setting the Tftpd Server IP

B.1.3 Set the Ethernet upgrade f le name

- a) Click "Browse & set file name". In the file open window, browse to the location where you extracted the firmware upgrade *.S19 file. Click "OK"
- b) Click "Write"
- c) Ethernet Upgrade File Name should read '~OK'

Tftpd Server IP: 'OK				
192 168 2 62 Write Read				
Get local IP				
Ethemet Upgrade File Name: ~OK <	-C			
501024_200_MODBUS_ENET_V1_0_0_0.elf.S19				
Browse & set file name Write Read				
\uparrow				
	0			
	— a			

Figure B.3: Setting the upgrade file name

B.1.4 Enter upgrade mode

- 1) On the «Edit» menu, select «Enter Ethernet Firmware Upgrade Mode»
- 2) A dialog will open requesting verification of the upgrade filename. If the name matches, click «Yes».
- 3) If it does not match, click «No» and repeat step 2.
- 4) In the dialog, «Enter unlock code to enter upgrade mode», enter the code:

2956102

- 5) The message, «Successfully entered Ethernet Firmware upgrade mode» will appear, click «OK».
- 6) The message «Cycle power to upgrade Ethernet firmware via Tftpd server» will pop up. DO NOT Click OK at this point.

B.1.5 Complete upgrade process

- 1) Remove power from you MDrive.
- 2) Click "OK" on the dialog referenced in Step 3-e.
- On the "Edit" menu, select "Select & Enter Tftpd Server". The browse dialog should open to the install directory. If not, browse to the Tftpd_Server install directory and select "tftpd32.exe"
- 4) Click "Open"
- 5) Apply power to the MDrive
- 6) The upgrade should begin after a few seconds.
- When complete, close Tftpd server. Note that there is no dialog informing you of completion. Check the tab marked "Log Viewer" to verify completion.
- 8) Cycle power to the MDrive.
- 9) Reconnect using the default IP: 192.168.33.1 and Subnet mask: 255.255.0.0.
- 10) Configure device to your system requirements.

🔆 Tftpd32			_ 🗆 י	×
501024_200_MO File siz 0 byte	DBUS_ENET_V1_ e : 434460 transferred	Mo	Browse Show Dir	
192.168.33.1:1025	<501024_200	10:25:32	0%	
<u></u>			<u>}</u>	
About	Settings		Help	J

Figure B.4: Firmware upgrading

WARRANTY

TWENTY-FOUR (24) MONTH LIMITED WARRANTY

IMS Schneider Electric Motion USA warrants only to the purchaser of the Product from IMS Schneider Electric Motion USA (the "Customer") that the product purchased from IMS Schneider Electric Motion USA (the "Product") will be free from defects in materials and workmanship under the normal use and service for which the Product was designed for a period of 24 months from the date of purchase of the Product by the Customer. Customer's exclusive remedy under this Limited Warranty shall be the repair or replacement, at Company's sole option, of the Product, or any part of the Product, determined by IMS Schneider Electric Motion USA to be defective. In order to exercise its warranty rights, Customer must notify Company in accordance with the instructions described under the heading "Obtaining Warranty Service".

NOTE: MDrive Motion Control electronics are not removable from the motor in the feld. The entire unit must be returned to the factory for repair.

This Limited Warranty does not extend to any Product damaged by reason of alteration, accident, abuse, neglect or misuse or improper or inadequate handling; improper or inadequate wiring utilized or installed in connection with the Product; installation, operation or use of the Product not made in strict accordance with the specifications and written instructions provided by IMS; use of the Product for any purpose other than those for which it was designed; ordinary wear and tear; disasters or Acts of God; unauthorized attachments, alterations or modifications to the Product; the misuse or failure of any item or equipment connected to the Product not supplied by IMS Schneider Electric Motion USA; improper maintenance or repair of the Product; or any other reason or event not caused by IMS Schneider Electric Motion USA.

IMS SCHNEIDER ELECTRIC MOTION USA HEREBY DISCLAIMS ALL OTHER WARRANTIES, WHETHER WRITTEN OR ORAL, EXPRESS OR IMPLIED BY LAW OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. CUSTOMER'S SOLE REMEDY FOR ANY DEFECTIVE PRODUCT WILL BE AS STATED ABOVE, AND IN NO EVENT WILL IMS BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, SPECIAL OR INDIRECT DAMAGES IN CONNECTION WITH THE PRODUCT.

This Limited Warranty shall be void if the Customer fails to comply with all of the terms set forth in this Limited Warranty. This Limited Warranty is the sole warranty offered by IMS Schneider Electric Motion USA with respect to the Product. IMS Schneider Electric Motion USA does not assume any other liability in connection with the sale of the Product. No representative of IMS Schneider Electric Motion USA is authorized to extend this Limited Warranty or to change it in any manner whatsoever. No warranty applies to any party other than the original Customer.

IMS Schneider Electric Motion USA and its directors, officers, employees, subsidiaries and affiliates shall not be liable for any damages arising from any loss of equipment, loss or distortion of data, loss of time, loss or destruction of software or other property, loss of production or profits, overhead costs, claims of third parties, labor or materials, penalties or liquidated damages or punitive damages, whatsoever, whether based upon breach of warranty, breach of contract, negligence, strict liability or any other legal theory, or other losses or expenses incurred by the Customer or any third party.

OBTAINING WARRANTY SERVICE

If the Product was purchased from an IMS Schneider Electric Motion USA Distributor, please contact that Distributor to obtain a Returned Material Authorization (RMA). If the Product was purchased directly from IMS Schneider Electric Motion USA, please contact Customer Service at info@imshome. com or 860-295-6102 (Eastern Time Zone).

Customer shall prepay shipping charges for Products returned to IMS Schneider Electric Motion USA for warranty service and IMS Schneider Electric Motion USA shall pay for return of Products to Customer by ground transportation. However, Customer shall pay all shipping charges, duties and taxes for Products returned to IMS Schneider Electric Motion USA from outside the United States.

Schneider Electric Motion USA

370 North Main Street, P.O. Box 457 Marlborough, CT 06447 - U.S.A. Tel. +00 (1) 860 295-6102 - Fax +00 (1) 860 295-6107 e-mail: info@imshome.com http://www.{ [ci] ischneider-electricB[{

© Schneider Electric Motion USA All Rights Reserved. V1.00, 01.2012 Product Disclaimer and most recent product information at www.motion.schneider-electric.com

